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Abstract Text recognition in natural scene images is
a challenging task that has recently been garnering in-
creased research attention. In this paper, we propose a
method of recognizing text by utilizing the layout con-
sistency of a text string. We estimate the layout (four
lines of a text string) using initial character extraction
and recognition result. On the basis of the layout con-
sistency across a word, we perform character extraction
and recognition again using four lines, which is more
accurate than the first process. Our layout estimation
method is different from previous methods in terms of
exploiting character recognition results and its use of a
class-conditional layout model. More accurate and ro-
bust estimation is achieved and it can be used to refine
character extraction and recognition. We call this two-
way process—Iirom extraction and recognition to lay-
out, and from layout to extraction and recognition—
”bi-directional” to discriminate it from previous feed-

back refinement approaches. Experimental results demon-

strate that our bi-directional processes provide a boost
to the performance of word recognition.
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1 Introduction

As the number of vision systems (e.g., mobile cam-
eras) increases, so too does the need for information
retrieval from images. Text in natural scene images con-
tains valuable information pertaining to street signs,
store names, product brands, and so on. Recognizing
the text in these images is becoming more important
than ever before.

Although conventional optical character recognition
(OCR) has been successfully commercialized, its appli-
cation is limited to the realm of business documents and
factory automation. Recognizing text in natural scenes
is still a challenging problem and has been garnering
a significant amount of attention from academia. Such
images frequently contain blurred text on complicated
backgrounds, and the uncontrolled lighting conditions
can cause reflection, highlights, and/or shadows on the
text, which makes scene text recognition more difficult
than OCR.

Text recognition research can be divided into two
categories: text detection and word recognition. The
method we propose in this work falls into the category
of word recognition, specifically, the recognition of a
word from a given cropped rectangular region in an
image. Word recognition is regarded as the key part of
end-to-end scene text recognition.

Character extraction is a critical stage in the word
recognition of scene text. Character extraction is dif-
ficult, especially for scene text because scene text is
not easily segmented or binarized due to various fac-
tors such as noise, blur, and complicated background.
Two types of methods are mainly used in character ex-
traction: connected component-based (CC-based) and
classifier-based. CC-based methods (e.g., MSER) ex-
tract characters by connected component analysis where
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text pixels with similar properties are grouped to con-
struct component candidates. Classifier-based (e.g., slid-
ing window) methods find the candidate character by
applying a character classifier to sub-windows in mul-
tiple scales through all locations of an image. Choosing
which of these two methods to select is a system de-
sign issue. There is a trade-off between accuracy and
processing time. Although sliding window methods are
generally more accurate than CC-based methods, they
are more computationally expensive.

Character recognition is also a fundamental prob-
lem of text recognition. Scene text’s variation of font,
noise, and distortion makes this problem a very chal-
lenging task. Various features and classifiers have been
investigated as character classifiers (e.g., HOG feature
+ SVM classifier, convolutional neural networks). Geo-
metric information (position of characters) is also used
to improve the accuracy of character recognition. For
example, in scene text recognition, Bissacco et al. [6]
added the geometric feature (top and bottom positions
relative to the height of text line) in addition to HOG
features, while Neumann and Matas [28] corrected the
initial recognition results by comparing the height with
other characters to differentiate the upper and lower
cases. Since vertical position and height are important
features that characterize alphabets (e.g., the upper
and lower cases of some characters such as ’o’ are dis-
criminated only by these features), incorporating pre-
cise geometry features is important to improve the ac-
curacy of character recognition. However, in scene text,
since it is possible to know the relative vertical posi-
tion for only a few characters, it is difficult to estimate
precise geometry information for character recognition.

In this work, we address the two problems men-
tioned above—loss of character geometric information

that we can use to estimate layout is limited. We there-
fore propose a novel layout estimation method that can
estimate four lines from a limited number of characters.
Our layout estimation method is different from previ-
ous methods in that it exploits character recognition
results and uses a class-conditional layout model that
is trained in advance. On the basis of four lines esti-
mated by the proposed method, we refine the result of
character extraction and recognition.

There are two main contributions in this paper. The
first is accurate and robust layout (four line) estimation
methods. The proposed method can estimate layout
from only a few candidates by using recognition results
and trained statistical layout model. In addition, our
method can easily be adapted to other types of layout
such as curve; i.e., it is not limited to linear. The second
is a layout consistency-based feedback refinement pro-
cess. Using the four lines estimated by our method, we
perform the following two feedback refinements: char-
acter re-extraction by sliding window with four lines
and re-scoring of character classification using relative
position to the four lines. These two contributions are
regarded as top-down (character extraction and recog-
nition — word layout) and bottom-up (word layout —
character extraction and recognition) processes, respec-
tively. We combine these two processes into what we call
a bi-directional process.

2 Related Works

In this section, we review works that are related to our
method. We first review scene text recognition, espe-
cially word recognition. We then focus on geometric es-
timation related to our line estimation method. Finally,

and trade-off between two character extraction approaches—ye review the style consistency (our layout consistency

by focusing on layout consistency. Following the typog-
raphy, we exploit four lines of a text string (Fig. 2)
as layout consistency. Since fonts are designed on the
basis of these four lines (layout consistency), they can
be regarded as one of the important style that define
the vertical position of characters. We can solve the two
problems by performing character extraction and recog-
nition using four lines: 1) we can perform efficient and
accurate character extraction even with sliding window
because character size and position are constrained by
four lines, and 2) geometry information can be incor-
porated into character recognition by referring to the
relative position between the four lines and characters.

Accurate estimation of four lines is indispensable in
terms of making use of them for character extraction
and recognition. However, since only a few characters
can be extracted reliably from one word, information

can be regarded as a kind of style consistency) and
feedback refinement related to our re-extraction and re-
scoring processes.

2.1 Scene Text Recognition

The problem of scene text recognition has been ad-
dressed as two tasks: text detection and word recogni-
tion. Text detection methods tackle the problem of lo-
calizing words in whole natural scene images and word
recognition methods recognize the cropped word im-
ages obtained in the text detection stage. End-to-end
systems that integrate both methods are addressed in
[39,41,3,14,28,29,6]. Since our method focuses on the
word recognition problem, we review the work related
to word recognition here.
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Typical word recognition systems starts with candi-
date character extraction. Character extraction meth-

et al. [6] use the HOG feature as an input of the deep
neural network to find character segmentation points

ods can be categorized into two types: connected componentas well as the character classifier.

based (CC-based) and classifier-based. For connected
component-based methods, MSER [24] is the most pop-
ular method in scene text recognition [31,29,28,30] be-
cause it achieves high recall compared with the bina-
rization that is often used in document processing. For
classifier-based methods, a sliding window consisting
of a character classifier is often used [40,39,41,27,34].
Since multi-scale sliding window produces many over-
lapped candidates, non-maximum suppression is applied
to them to reduce the number of candidate regions.
Some recent works such as those by Bissacco et al. [6]
and Alsharif and Pineau [3] use over-segmentation meth-
ods that find character segmentation points with a char-
acter classifier, while Weinman et al. [44] fully inte-
grate segmentation and recognition into a probabilistic
framework. In these methods, since the number of can-
didates is not so large compared to multi-scale sliding
window, they do not use NMS.

Character candidates extraction is usually performed
with high recall and appropriate character regions are
selected in the next inference stage. Previous works
have addressed character extraction using pictorial struc-

ture [39], conditional random field (CRF) [27,34], weighted

finite-state transducers (WFST) [31], and hidden Markov
models(HMM) [3]. Although the important components
of CRF are energy functional and likelihood training,
Mishra et al. [27] and Shi et al. [34] use only energy
functional. Most models solve the word inference prob-
lem by a cost minimization problem with a Viterbi-like
algorithm. A language model is often incorporated into
this inference to check the consistency of language. Lan-
guage models have been used since the appearance of
OCR literature such as that by Jones et al. [16] us-
ing n-grams as an OCR post-processor and by Bazzi et
al. [4] integrating n-grams in an OCR system. In scene
text recognition, Thillou et al. [37] used n-grams for
post-processing and Weinman et al. [42,45] integrated
bi-grams for word recognition while Bissacco et al. [6]
integrated n-grams. The consistency of not only lan-
guage but also style is incorporated into this process,
as we discuss in the next subsection.

Deep neural networks have recently been used in
scene text recognition to improve the recognition accu-
racy. Wang et al. [41] use convolutional neural networks
(CNN) with raw image input as a character classifier.
Alsharif and Pineau [3] use a maxout network and fur-
ther improve the performance of CNN’s character clas-
sification. Specifically, they use the maxout network for
segmentation and character classification together by
integrating them into hybrid HMM models. Bissacco

Some recent work [2,12,14,11] performs word recog-

nition by a holistic approach, in contrast to other character-

based recognition approaches. Goel et al. [11] use whole
image features to recognize words by comparing them
with the synthetic images of lexicon words. Almazan et
al. [2] embed word images and text strings in a com-
mon vectorial subspace and cast a word recognition task
as a nearest neighbor problem. Gordo et al. [12] ex-
tend this work by using supervised mid-level features
for word image representation. Jaderberg et al. [15] in-
put a whole word image into a deep convolutional neu-
ral network trained with a huge amount of synthetic
images. In an extension of this work [14], they inte-
grate this word recognition framework into an end-to-
end text recognition pipeline. Since these methods can
deal with style consistency such as character alignment
in a holistic way, they are extremely effective in tasks
where a candidate lexicon is available as prior knowl-
edge. However, it is difficult for them to recognize a new
word out of lexicon.

2.2 Text Line Estimation

Estimation of text line has been used to improve text
recognition accuracy. In handwriting recognition, Ben-
gio and LeCun [5] estimate four tied curves for each
word to normalize a word image. The model of the four
curves is represented by six parameters and the most
likely parameters are inferred by a probabilistic frame-
work with an EM algorithm. Caesar et al. [7] estimate
four tied lines based on the contour processing of a bi-
nary image with iterative regression analysis.

In scene text recognition, Neumann and Matas in
[28] introduced a method to detect top and bottom
lines for geometric image normalization while using a
typographic model by measuring the height of upper-
case and lower-case letters for correctly recognizing in-
terchangeable letters. Neumann and Matas in [29] use
four lines of a text string to verify text localization.
They use the vertical extrema of character regions to
fit four lines. They first estimate the common slope (di-
rection) of four lines by fitting bottom points and then
find four lines that minimize the square error. Wein-
mann et al. in [44] identified a pair of guidelines for a
text string to normalize the region before recognizing
words. They can infer the extrema in which the guide-
lines intersect even if characters are inclined through
an iterative refinement approach.

These methods use extrema of character regions to
estimate lines without recognizing characters. They con-
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sequently require many candidate regions to estimate
the four lines accurately as the exact typograhic style
that we need. Since sometimes only a few characters can
be extracted reliably from scene text, these methods are
not suited for our purpose. Our method, in contrast, es-
timates lines using character recognition results. In ad-
dition, we use a character-dependent layout model that
we train in advance. Our method can therefore extract
a lot of information to estimate the word layout (four
lines) and achieves accurate and robust layout estima-
tion from only a few candidate regions.

2.3 Style Consistency and Feedback Refinement

Style consistency is important information and has been
widely used in text recognition [33,36,4]. In terms of
scene text, Weinman et al. in [42,45] incorporate char-
acter similarity as style consistency under the assump-
tion that the appearance of characters with the same
class is similar if the source (font) is the same. They
incorporate this information into a probabilistic frame-
work so that characters with similar appearance are
given the same label and character with dissimilar ap-
pearance are given different labels. Weinman et al. [43]
incorporate the bi-gram model of character width into
the inference to find the best parse, wherein correlation
between the widths of a character pair is statistically
modeled with reference to character class. Novikova et
al. [31] use color and vertical position as style consis-
tency. Specifically, they use color information and the
distance from the top and bottom points of character
to the baseline as a part of the word inference process.

We conclude this section with a brief review of works
related to our feedback refinement, i.e., the re-extraction
and re-scoring processes. Huang et al.[13] split the con-
nected characters detected by MSER using sliding win-
dow with a CNN classifier after estimating the text line
from initial candidates. Although this process is related
to our re-extraction using sliding window, it cannot re-
cover missing characters, unlike our method. Mishra et
al. [27] use character classifier re-scoring based on as-
pect ratio, which is related to our method using vertical
geometry positions to re-score character classification
although Mishra et al. does not use word-level knowl-
edge to re-score. Neumann and Matas [28] correct the
initial recognition results by feedback loop to differen-
tiate the upper and lower cases of certain letters by
comparing the height with other recognized characters.

Spot

Input image
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Fig. 1: The pipeline of the proposed word recognition method.

3 Overview of the Approach

Our method begins by extracting of reliable characters
and using them to estimate four lines using them (Sec-
tion 4). Character re-extraction and re-scoring are then
performed using the four lines and the optimal word
is inferred from obtained candidates with a cost min-
imization framework (Section 5). Figure 1 shows the
pipeline of the proposed method.

We first extract reliable characters whose scores are
sufficiently high. To extract a reliable character, we use
CC-based methods (MSER and Otsu binarization) on
an input word image and apply a character classifier
to extracted components. We then estimate the layout
consistency (four lines of a text string) on the basis
of the reliable characters. Unlike previous estimation
methods, which use character eztraction results to ob-
tain constraints [28], we use character recognition re-
sults to obtain layout consistency. Each character recog-
nition result predicts the distribution of the line posi-
tions by using a character class dependent model that
is trained in advance, which allows accurate estimation
even if only a few candidates can be extracted.

We then perform character extraction and recog-
nition again under the layout consistency defined by
four lines. We use two top-down cues, indicated by the
red arrows in Fig. 1. (a) Re-extraction. We extract
character candidate regions by using layout consistency
to concentrate on promising regions. Although we use
sliding windows, we can perform a computationally ef-
ficient scan with four lines, unlike conventional multi-
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Table 1: Character types

Ascender bdfhiklt

Descender gjpay

Small lower case | acemnorsuvwxz

Upper case ABCDEFGHIJKLM
NOPQRSTUVWXYZ

Digit 0123456789

scale sliding window. (b) Re-scoring. Among multiple
character classes for each region, we re-calculate scores
on the basis of layout consistency, giving higher scores
to character classes consistent with the style and lower
scores to classes with less consistency.

Candidate regions obtained by first and second scans
are processed jointly in the word inference process. We
find the optimal labeling (character or non-character,
and its character class as well) that minimize the cost
function. We use a cost function similar to the cost func-
tion in Mishra et al. [27], which is defined by classifi-
cation score, spatial constraints, and linguistic model.
The labeling that minimizes the cost function is inferred
by the TRW-S algorithm [19].

3.1 Character Classifier

Here, we describe the character classifier used in our
paper. To recognize characters, we apply a character
classifier to every candidate region. It generates clas-
sification probabilities (scores) for multiple character
classes. We use HOG features [9] along with the aspect
ratio of the bounding box of the character. Since alpha-
bets tend to have certain aspect ratios for specific char-
acters, aspect ratio is important information to identify
character class. We confirmed a performance increase
due to using aspect ratio (accuracy increase from 80.3%
to 81.8% on the ICDAR 2003 dataset). An RBF kernel
SVM is used for the classifier with the one-versus-all
multiclass SVM setting. We give special treatment to
case-identical characters (c-o-s-v-w-x-z) that are iden-
tical in upper and lower cases. Instead of 62 classes
corresponding to upper and lower case alphabets and
digits, we use 55 classes by merging the upper and lower
cases of case-identical characters into one class. These
classes are then separated into upper and lower cases
in the re-scoring process described in Section 5.2.

4 Estimation of Four Lines
The proposed method starts with the estimation of four

lines—ascender line, mean line, baseline, and descender
line (Fig. 2)—using the initial recognition result. We

Ascender line
Mean line =

Baseline
Descender line

yle

Fig. 2: Four lines of a text string.

first extract reliable characters that are used for line
estimation. To estimate the lines from reliable charac-
ters, we train the Gaussian distribution model of the
line positions depending on each character class in ad-
vance. We then estimate the equation of the four lines
via maximum likelihood estimation by using the posi-
tions of reliable characters and trained models.

4.1 Extraction of Reliable Character

To obtain layout consistency (four lines of a text string),
we use reliably extracted characters, i.e., reliable char-
acters, whose scores are above the predetermined thresh-
old. The idea of using reliable outputs to guide recogni-
tion has appeared in various literature on handwriting
and speech recognition (e.g., Miller and Viola [25]). We
use a connected component-based (CC-based) method
to extract initial candidate regions. We extract can-
didate regions by two methods: MSER and Otsu bi-
narization. Following the approach of Neumann and
Matas [28], the MSER region detector [24] is used to
extract the set of candidates. We also use Otsu bina-
rization [32], where the connected components of bi-
nary images are used as another set of candidates. We
combine the results of MSER and Otsu binarization to
form the final result of CC-based extraction. We con-
firmed that the combination of these two methods de-
livers higher recall rates in the character extraction (see
Section 6.3).

We then select reliable characters from candidate
character regions by using a character classifier. We ap-
ply the character classifier to every candidate, which
outputs a character class along with its score. The re-
gions with scores above a certain threshold are selected
as reliable characters. These selected regions are then
used to estimate four lines of a text string in the next
step. Since two or more reliable characters are required
for the line estimation, if less than two characters with
scores above the threshold are extracted, the two char-
acters with the two highest scores are selected as reli-
able characters.
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Step 1. Estimate baseline

Lin

Line

Reliable characters

Gaussian models

Line

Estimated line position

Step 2. Estimate other lines
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e T - La2: y=kx+b2
‘ 7‘7‘737‘7 La: y=kx+b3
——o ¢ & |, y=kx+ba4

|L3: y=kx+b3

c1=l’ c2=i" c3='n’ ca='e’

Fig. 3: Estimation of four lines. For each reliable character, distributions of line position are obtained from trained models.
Equations of lines are then estimated by maximum likelihood estimation.

4.2 Training of Line Position Models

In this section, we describe how to train the Gaussian
distribution model. For training we used the word im-
age datasets with ground truth of character bounding
boxes and their classes. We used the training part of
the IIIT 5K-Word [26] and ICDAR2013 [18] datasets.
In addition to these, we used the synthetic word im-
ages as training data because some character classes
such as ’q’ scarcely appear in public training sets. We
used 30 words generated from different fonts and each
synthetic word contains 62 characters (0..9, a..z, and
A..7Z). In total, 2,577 words containing 30~577 charac-
ters for each character class were used for training. The
detailed training procedure is shown in Algorithm 1. In
summary,

1) Determine the ground truth lines of training images
from given training data (lines 5-9).

2) Calculate the line positions relative to each charac-
ter (lines 10-16).

3) Calculate Gaussian parameters pi., o from obtained
positions (lines 19-24).

We first determine four lines for each of the training
word images. The lines that a character touches depend
on the class of the character, as shown in Table 1—for
example, upper case characters touch the ascender line
and the baseline. On the basis of this fact, lines are fit to
the centers of the upper and lower bases of the bounding
boxes of characters using the least-mean-square (LMS)
algorithm. This requires more than two points available
for each line. If not available, corresponding lines will
not be drawn and the information will not be taken into
account for the corresponding training word image.

We then compute vertical positions of lines relative
to each character region. The intersections between four
lines and the vertical center line of a character are used
as the line positions for the character. These positions
are then normalized on the basis of the height of each
character region.

We construct a statistical model of line positions
using the position values obtained from many word im-
ages. We assume normalized line positions yield the

Gaussian distribution for each line and character class.
Therefore, the means and variances of normalized line
positions are obtained as the sufficient statistics of the
Gaussian distributions for each of the 62 classes x 4
lines, namely, p;. and o as the mean and variance for
each line [ and character class c. [ can be 1, 2, or 4
corresponding to ascender line, mean line, and descen-
der line, respectively; also, [ = 3 for the baseline for
completeness. These models are used to estimate the
line positions for each extracted region. Note that al-
though Algorithm 1 explicitly use the set of values P,
we can calculate the mean and variance efficiently by
maintaining not Pj. but rather just the sum and sum
of squares and updating them for each iteration.

Algorithm 1 Training of line position models

Input: Number of training word images N, Ground truth
data: character class and bounding box.

Output: {Mlc}v{o—lp} .

1: initialize {sz}zzi;i? < 62 x 4 empty set

2: fori =1 to N do

3: C < set of characters in ith word image

4: for1 =1 to 4 do

5: D < set of characters that touch line L;
6: if size(D) < 2 then

7 continue

8: end if

9: L; < Least-square fitting(D)

10: for k = 1 to size(C) do

11: ¢ < character class of Cj,

12: b < bounding box of Cy ([x y width height])
13: p < y-position of L; at x=by + byiqtn/2
14: p= (by - y)/bheight

15: add p to P

16: end for

17: end for

18: end for

19: for ¢ = 1 to 62 do
20: forl =1 to 4 do

21: Hie <= mean(P.)
22: 01 < variance(P.)
23: end for

24: end for
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4.3 Estimation of Line Equations

We now estimate equations of lines from reliable char-
acter extraction results by using a trained model of line
position. For each character region, we can estimate the
positions of lines, as shown in Fig. 3. Let us denotes the
equation of [ th lines as L; : y = kx + b;. The estima-
tion of line equations is performed with the following
two steps:

1) Estimate the equation of baseline (common slope k
and intercept of baseline bs).

2) Estimate the intercept of other three lines (by, bo,
and b4)

We first determine a baseline L3. Since most char-
acters touch the baseline, its estimation is expected to
be more reliable than others. Neumann and Matas [29]
also estimate baseline prior to the other three lines. The
vertical location of the baseline at each reliable charac-
ter is obtained from line position models as p3., where ¢
is its character class. The baseline is inferred by fitting
these locations using LMS.

Next, other lines are estimated. Since the slope of
these line is the same as that of the baseline, we only es-
timate the intercepts for each of three lines (by, ba, and
by). We estimate the intercepts by maximizing likeli-
hood under the constraint of the slope k. Note that

case-identical characters (c-0-s-v-w-x-z) are excluded from

reliable characters to estimate lines other than the base-
line. Given N reliable characters in a word, let ¢1, ¢o, - - -
be corresponding character classes and x1,29, - , 2N
be horizontal locations at the centers of the characters,
as shown in Fig. 3 right. Further assuming p(yii|c;) to
be the probability that the intercept of the /th line at x;
is y;; when the character class of the ith character is ¢;,
the intercepts that maximize likelihood can be obtained
as

N
by = arg maXZ Inp(yile:)
t i=1
N
= arg maxz — (Hie; — yir) (1)
by i—1 20’[(:12

N -
ZiZl Ufii2 (lulci - kx’t))
N 1 ’
Q=1 757

where pi.,, 0l are the mean and variance of the posi-
tion of the Ilth line for ¢;, normalized by the location

and size of the ith reliable character.
By considering the variance oy.,, we vary the prior-
ity of characters for estimation. For example, in Fig. 3,

‘L’ is considered more important to estimate the as-
cender line than the other characters. These estimated

Fig. 4: Examples of line estimation results. The red rectangles
are reliable characters used for the estimation of four lines.

lines are used to re-extract missed character candidate
regions and to re-score the initial scores from the char-
acter classifier. Figure 4 shows examples of line estima-
tion results.

4.4 Curved Text

Although we typically assume that characters in text
are aligned in a straight fashion, scene images some-
times contain curved text. To extend the proposed method
for curved text, we construct a four-concentric circle
model in addition to the existing four-line model with
adaptive model selection.

We first judge from reliable characters whether a
given word is straight or curved. Since the slope of a
curved text line is gradually changed from left to right,

»CNwe check if the text is curved by the following steps.

First, for each reliable character, the vertical location
of the baseline is estimated from a trained Gaussian
model. Adjacent locations are connected by lines and
their slopes are calculated. We then calculate the sub-
traction between two slopes for every adjacent pair of
lines. If these difference values are all positive or all
negative, text is inferred as curved and a circle model
is used for layout estimation.

Next, we explain how we estimate four concentric
circles. First, a circle corresponding to the baseline (base-
circle) is estimated using LMS. The other three circles
are then estimated. Since we assume the four circles are
concentric, the centers of the circles are the same as that
of the basecircle. The radius of each circle is obtained
by maximum likelihood estimation. Examples of curve
estimation results are shown in Fig. 5. On the basis of
four estimated circles, re-extraction and re-scoring are
performed similar to the straight cases. Our evaluation
of this system is described in Section 6.5.

The limitation of our method is that it does not
work well for largely oriented text, since we used only
the vertical extrema of a connected component as the
intersection point; for oriented characters, vertical ex-
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Fig. 5: Examples of four concentric circles estimation for
curved text. The red rectangles are reliable characters used
for estimation.

Fig. 6: Examples of the effect of sliding window re-extraction.
The top row shows the extraction results by CC-based extrac-
tion (MSER and Otsu). The middle row shows the four lines
estimated by our method. The bottom row shows the ex-
traction results with sliding window re-extraction along four
lines.

trema is not always the point that intersect with four
lines. Weinman et al. [44] address this problem and infer
the exact extrema that the guidelines intersect by using
an iterative refinement method. However, the method
they used cannot estimate guidelines from few charac-
ters (e.g., ”Dry” in Fig. 7 of that work [44]) because it
estimates the top and bottom lines without recogniz-
ing character class. We assume that accurate lines can
be estimated even from largely oriented text with few
characters by combining their iterative process with our
method using the character recognition result.

5 Feedback Refinement with Four Lines
5.1 Sliding Window-based Re-extraction

The connected component-based method (Section. 4.1)
sometimes misses characters, such as those shown in the
top row of Fig. 6. The sliding window-based method, in
contrast, can find such characters, but this comes at the
cost of a huge number of candidate regions. Moreover,
since windows need to be scanned at various scales,
aspect ratios, and locations in a given image, a huge
number of false alarms is produced and computational
costs may become high.

Although we also use sliding window to re-extract
missed characters, our method significantly reduces the
number of windows to be checked by imposing layout
consistency. We can reduce the number of windows for
two reasons: (1) our method scans windows in limited
space excluding reliable character regions, as shown in
Fig. 7, and (2) we slide windows in the horizontal di-
rection only because vertical positions are determined
by word layout (four lines).

Here, we describe the details of the sliding window
along four lines. Figure 8 illustrates the sliding win-
dow re-extraction. We change the vertical position and
height of the windows in accordance with the follow-
ing three cases: (1) windows to detect ascenders, up-
per cases, and digits between ascender line and base-
line, (2) windows to detect small lower cases between
mean line and baseline, and (3) windows to detect de-
scenders between mean line and descender line. The
width of the window is determined by selecting an as-
pect ratio from a set of predetermined ratios. The win-
dows are then scanned along lines. The regions where
reliable characters are detected will be skipped to fur-
ther reduce the number of scans. In this way, characters
that are missed in the first extraction are re-extracted,
as shown in the bottom row of Fig. 6. Our two-way
character extraction—a hybrid of CC-based and sliding
window extraction—significantly reduces the computa-
tional cost while achieving high recall.

The final set of candidate character regions is ob-
tained by combining MSER, Otsu binarization, and
sliding window re-extraction. Previous sliding window-
based methods [41,27,34] typically apply non-maximum
suppression (NMS) to reduce the number of candidate
regions before they are fed into a word inference stage.
However, when we tried using NMS after our sliding
window re-extraction, it was not as effective as in pre-
vious works because our method already sufficiently
reduces the number of character candidate regions by
layout consistency, and thus the difference in the per-
formance (word recognition accuracy and processing
time) does not change much between with and with-
out NMS. We therefore decided not to use NMS follow-
ing the method without sliding window, the same as
Novikova et al. [31] who use MSER. False extractions
are discarded by solving the cost minimization problem
described below.

5.2 Re-scoring with Four Lines

Character classification scores are modified on the basis
of on layout consistency before the word inference pro-
cess. The new scores are then calculated on the basis
of goodness of fit between the estimated lines and the
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Fig. 7: Sliding window re-extraction. The yellow region is the
space to be scanned, the green lines are the four estimated
lines of a text string, and the red rectangles are bounding
boxes of reliable characters.
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(1) For upper case, ascender, digit
(2) For small lower case
(3) For descender

\

Fig. 8: The vertical position of windows in sliding window
re-extraction.

trained models of line positions, as follows:

! (pie; — yir)®
S(a; = ¢5) = pleglaa) [T exp <—w> )
=1

~ 2
Jle

where p(cjlx;) is the original classification score for i
th candidate classified as class c;. The scores for case-
identical characters, i.e., S(z; = cgj) for the score of
the upper case and S(z; = JL) for that of the lower,
are then calculated as

=1

This re-scoring process enables more accurate charac-
ter recognition because geometric information (vertical
location) ignored in the first scan can be taken into ac-
count. For example, for a window between ascender line
and baseline, the score of the window classified as la-
bel ‘C’” does not decrease because estimated lines match
with the trained line positions of ‘C’. In contrast, the
score of ‘c’ decreases because estimated lines do not
match with the models. As an additional benefit, win-
dows located far from four lines will be assigned low
scores for all character classes, which helps remove false
positives in the word inference stage.

5.3 Cost Minimization

The application of character recognition to each candi-
date character region generates character classes with
scores. However, the given set of character regions often
contains false positives, and corresponding character
classes include classification failure. We select appro-
priate character regions as well as promising character
classes by an energy minimization framework.

We first construct a graph with candidate charac-
ter regions as nodes and place edges between sufficiently
close nodes. Each node is represented by a random vari-
able X; that takes a label x; corresponding to a charac-
ter class including non-character label e. We then define
a cost function by making use of character recognition
scores, spatial constraints, and linguistic knowledge and
infer the most likely word by minimizing the cost func-
tion.

We use a cost function similar to the one by Mishra
et al. [27]. The cost function E(z) is represented as a
sum of unary and pairwise terms, as follows:

E(x) = ZEi(ﬂ«“i) +D EBij(w, ), (5)

where x = {z;|i = 1,2,...,n} is the set of all random
variables, F;(x;) is the unary cost, E;;(x;,x;) is the
pairwise cost, and ¢ represents the set of all neighboring
pairs of nodes, which is determined by the structure of
the constructed graph. We use the same pairwise cost
as Mishra et al. [27], using a bi-gram model and spatial
constraint. We also use a similar formulation for unary
cost as Mishra et al. [27] but with a layout-based score
(2) instead of raw classifier confidence:

if ¢j #e,

’Lf Cj =€,

1-— S(JTZ = C]')

Amaz;S(z; = ¢;)

Ei(zi = ¢;) = { (6)
where S(z; = ¢;) is the score calculated in (2) and A
is the parameter of penalty for the node taking a null
label, which is set to 10 in our experiments. Given these
unary and pairwise terms, the word recognition result
is acquired by minimizing the cost function. To do this,
following Mishra et al. [27] and Shi et al. [34], we use
the TRW-S algorithm [19].

6 Experiments
6.1 Datasets

We used several challenging public datasets—ICDAR
2003 [23], 2013 [18], 2015 [17], Street View Text (SVT)
[39,40], and IIIT 5K-Word [26]—to evaluate the word
recognition performance. The ICDAR datasets were scene
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text recognition datasets created for the ICDAR com-
petition. The ICDAR 2015 dataset [17] was created for
the task of ”Challenge on Incidental Scene Text” in-
troduced in ICDAR 2015, which is a more challenging
dataset than previous ICDAR datasets such as ICDAR
2003 and 2013. It contains more than 1,500 images ac-
quired with wearable devices; thus, the images are of-
ten arbitrarily rotated and include bad conditions (e.g.,
blur, noise), unlike the focused scene text in previous
ICDAR datasets. The detailed evaluation protocol of
word recognition is described in Section 6.4. For IC-
DAR 2003, a 50-word lexicon is provided for each image
by Wang et al. [39].

The SVT dataset contains images taken from Google
Street View. Following the experimental protocol of
previous works [39,40], we used the SVI-WORD sub-
set that contains 647 words, where a 50-word lexicon is
associated with each word.

The TIIT 5K-Word dataset is the largest dataset
for cropped word recognition, consisting of 2,000 word
images for training and 3,000 word images for testing.
Each test image has an associated 50- and 1000- word
lexicon for evaluation on a closed-vocabulary task.

We also used the training part of the ICDAR 2003
and ITIT 5K-Word datasets for training character clas-
sifiers because ground truth bounding boxes and char-
acter labels are provided on these datasets. Chars74K
[10] was also used for training the character classifier.

6.2 Evaluation of Character Classifier

In this section, we present a detailed implementation
and evaluation of the character classifier used in our ex-
periments. HOG features were computed with a block
size of 2 x 2 cells and a cell size of 7 x 7 pixels using
nine bins after resizing each image to a 28 x 28-pixel
window. When the input image height was larger than
64 pixels, the input image was smoothed by a 4 x 4 me-
dian filter before resizing. We used the standard LIB-
SVM package [8] for training and testing the SVM clas-
sifier. The parameters of RBFSVM were determined by
five-fold cross validation on the training data; C=6.72
and y=1.5 were obtained. We combined the ICDAR
2003 [23] training dataset, Chars74k [10] dataset, and
ITIT 5K-Word [26] training dataset as training data, re-
sulting in a total of 27,715 characters. In all reported
experiments, we used a 55-class SVM trained on these
datasets unless otherwise specified.

To evaluate the performance of the character classi-
fier, we tested the recognition rate on the ICDAR 2003
testing dataset. Table 2 shows the error rates of the
character recognition compared to other methods. For
this comparison, the result using a 62-class SVM (lower

Table 2: Error rates of character recognition on ICDAR 2003
dataset.

[ Method [ Error (%) |
Conv-Maxout [3] 14.5
CNN [41] 16.1
HOG + non-linear SVM (ours, 55-class) 16.89
HOG + non-linear SVM (ours, 62-class) 18.23
Conv. Co-HOG [35] 19
Co-HOG + linear SVM [38] 20.6
TSM (49-class) [34] 22.14
HOG + NN [40] 48.5
ABBYY [1] 73.4
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Table 3: Character extraction results on IIIT 5K-Word
dataset.

[ Extraction method [ Recall (%) |

MSER + Otsu + re-extraction 81.25
MSER + Otsu 72.96
MSER 68.24
Otsu 55.29

and upper cases of case-identical characters are trained
separately) is also shown. The results indicate that our
character classifier is comparable to the latest meth-
ods such as TSM [34] and Co-HOG [38,35] but behind
Conv-Maxout [3] and CNN [41]. When we changed the
training set to the combination of ICDAR 2003 train-
ing and Chars74K (same as Tian et al. [38] and Su et
al. [35]), the error rate of our method on the 62-class
SVM increased to 19.4% but was still comparable to the
methods with Co-HOG [38,35]. We assume that the dif-
ference of performance between our method (HOG +
non-linear SVM) and HOG + NN is due to the differ-
ence of classifier: non-linear SVM and nearest neighbor.

6.3 Evaluation of Character Extraction

After character candidate regions were obtained by MSER

and connected component analysis, we applied a char-
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Fig. 10: Relation between the number of scanned windows
per word and recall of character extraction on IIIT 5K-Word
dataset. N is the number of vertical scales on conventional
sliding window.

acter classifier to obtain character classes with scores.
Reliable characters that had scores above a threshold
(set to 0.8) were then selected. Although this threshold
was manually determined, we confirmed that the word
recognition performance is not very sensitive to this
value. Figure 9 shows the effect of the threshold value
on word recognition performance (both open and closed
vocabulary tasks) and runtime tested on ICDAR, 2003
dataset. The error rate is minimized with the threshold
of 0.5~0.9 and the runtime of sliding window increases
gradually as the threshold increases.

We then estimated four lines of a text string from
reliable characters using the trained models of line po-
sitions. We then performed sliding window-based re-
extraction. We used 1.1, 1.4, 1.7, and 2.0 as the set of
possible aspect ratios. The step size of the scan was
fixed to 1/10 of the height of the window.

To evaluate the performance of character extraction
from cropped words, we measured the recall of charac-
ter extraction on the IIIT 5K-Word testing dataset. We
computed the intersection over union (IoU) measure
of a detected window compared to the ground truth
with a threshold of 60%. Table 3 summarizes the re-
sults. Otsu, MSER, and MSER + Otsu show the re-
call using only first CC-based extraction and MSER
+ Otsu + re-extraction shows the recall using both
first CC-based extraction and second sliding window re-
extraction. The combination of MSER and Otsu achieved
a recall of 72.96%, which is far better than using only
MSER or Otsu. The recall was further improved by
8.29% (30.66% relative error reduction) by combination

with our sliding window re-extraction. We also mea-
sured the percentage of the words wherein all charac-
ters are correctly extracted by the proposed method
(Otsu + MSER + re-extraction). We confirmed that
all characters in 72.93% of words (2,188 words / 3,000
words) are correctly extracted by the proposed meth-
ods, which shows that the character extraction errors
are concentrated on the other 27.07% difficult words.

To determine the efficiency of our two-stage extrac-
tion method, we compared it with conventional multi-
scale sliding window extraction. We measured the re-
call of character extraction and evaluated the efficiency
by recall for the number of scans because computation
time is mainly occupied by computing features and ap-
plying classifiers. In the conventional sliding window
method, the height of the window was varied by the
scale s as follows: s =27% (n=0,1,..., N — 1), where
N is the number of scales. The height of the window was
set to s times the height of the word image. The step
size was varied among 13 different values (from 0.01 to
10) times the height of the window for both (proposed
and conventional) methods. Note that we do not ap-
ply NMS following the proposed method, because the
performance with NMS highly depends on the charac-
ter classifier and the threshold of NMS and thus fair
comparison is difficult with NMS.

Figure 10 shows the relation between the number of
scanned windows per word and the recall of character
extraction (IoU >60% is used). The conventional slid-
ing window method needed about 250 scans per word to
achieve 80% recall while the proposed method achieved
80% with about 40 scans including the results of MSER
and Otsu. These results demonstrate that our method
achieves high computational efficiency while retaining
high recall. Although the conventional sliding window
method can exceed 90% recall with more than 1,000
scans for a given word image, it does so at a huge
computational cost (more than 25 times that of our
method).

6.4 Cropped Word Recognition

In this section, we provide a detailed evaluation of cropped
word recognition. To determine the pairwise cost, we
use a large English dictionary with around 0.5 million
words provided by Weinman et al. [45]. We evaluate our
performance on both a closed (limited) vocabulary task
and an open (unlimited) vocabulary task. In the closed
vocabulary task, we selected the word with the small-
est edit distance in the lexicon as the final result. The
lexicon consists 50 words in the tasks of ICDARO03(50),
SVT, and IIIT5K(Small). All words in the test set are
used as lexicon in ICDAR(FULL) and ITIIT5K (Medium)
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has a 1,000-word lexicon. Open vocabulary tasks mea-
sure the performance by case sensitive accuracy with-
out edit distance correction. We evaluate ICDAR 2013
and 2015 in an open vocabulary task following the eval-
uation of the competition. We also evaluate ICDAR
2003 with an open vocabulary task (referred to as IC-
DARO03(Open)) in addition to ICDAR03(50) and IC-
DARO3(FULL). IIIT5K (Large) can also be considered
a case insensitive open vocabulary task because lexicon
with ground truth is not given. In the open-vocabulary
task, to compare accuracy with another method that
uses a strong language model, we implemented a sim-
ple post-processing method based on a 4-gram-based
language model similar to the secondary language scor-
ing in Bissacco et al. [6]. The language model is trained
with 0.5 million words independent from the ground
truth lexicon.

Following previous papers [39,27,31,34], words with
two or fewer characters or with non-alphanumeric char-
acters were excluded on ICDAR 2003. However, on IC-
DAR 2013/2015, we followed the exact evaluation pro-
tocol of the competition for a fair comparison.

6.4.1 Evaluation of Sliding Window Re-extraction

We have shown in Section 6.3 that sliding window re-
extraction improves the recall of character extraction
efficiently. To investigate the effect of re-extraction on
the accuracy of word recognition, we evaluated the ac-
curacy of cropped word recognition by changing extrac-
tion methods. We performed evaluation of the follow-
ing four tasks: ICDAR03(50), ICDARO3(FULL), IC-
DARO03(Open), and ICDAR13.

Table 4 shows the performance using different ex-
traction methods. The combination of MSER and Otsu
achieved much higher performance than either MSER
or Otsu alone. Moreover, sliding window re-extraction
further improved MSER+Otsu extraction. Figure 11
shows sample results to demonstrate the effect of slid-
ing window re-extraction. Missed and connected char-
acters in the MSER~+Otsu extraction were successfully
extracted by the proposed method, demonstrating the
effectiveness of the proposed re-extraction based on lay-
out consistency.

6.4.2 Evaluation of Text Line-Based Re-scoring

To confirm the effect of the re-scoring on the perfor-
mance of character classification, especially for case-
identical characters, we evaluated the performance with
and without the re-scoring on a case sensitive word
recognition task on the ICDAR 2003 and 2013 datasets.
We evaluated on following four tasks: ICDARO03(50),

Table 6: Word recognition results on ICDAR 2013.

Normalized
Method edit distance | Error (%)
PhotoOCR [6] 122.7 17.17
Proposed 329.5 41.00
PicRead [31] 3324 42.01
NESP [21] 360.1 35.80
ABBYY [1] 539.0 54.70

Table 7: Word recognition results on ICDAR 2015.

Normalized
Method edit distance | Error (%)
MADPS [20] 1128.0 67.07
NESP [21] 1164.6 68.32
DSM 1178.8 74.15
Proposed 1232.7 69.81

ICDARO3(FULL), ICDARO03(Open), and ICDAR13. In
the method without the re-scoring, we used a 62-class
SVM as a character classifier.

The recognition rates on the ICDAR 2003/2013 datasets

are shown in Table 5. Although the performance of the
closed-vocabulary task was increased slightly by the re-
scoring, the performance of the open-vocabulary task
was increased significantly. This indicates that our re-
scoring stage corrects falsely recognized characters ef-
fectively although its effect becomes weak when vocab-
ulary is limited.

To investigate the contribution of a re-scoring stage
to each character class, we measured the character wise
recognition performance on the ITIT 5K-Word dataset.
Figure 12 shows the character wise recognition rate
with and without re-scoring. The rate increase by re-
scoring is also shown and the graph is arranged in the
order of this amount. Character classes that do not con-
tain enough test data items (less than 15) are excluded
from the graph. As shown, the re-scoring has a positive
effect on the classification, especially for case-identical
characters (c-o-s-v-w-x-z). On the other hand, perfor-
mance of numeric characters decreases because their
position relative to other characters varies widely and
this variation cannot be learned with limited training
data. Although performance decreased for some char-
acters, the overall character level recognition error rate
was reduced from 26.79% to 24.35% (9.11% relative er-
ror reduction).

Figure 13 shows examples of the results to demon-
strate the effect of the re-scoring. These results indicate
that the re-scoring stage is effective to eliminate false
positives and to distinguish confusing characters such
as case-identical characters.
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Table 4: Word recognition error rates on ICDAR 2003 dataset with different extraction methods.

[ Method [ ICDARO03(50) | ICDARO3(FULL) | ICDARO3(Open) | ICDARI3 |
MSER + Otsu + re-extraction 12.21 15.58 38.57 41.00
MSER + Otsu 13.72 17.91 45.93 41.83
MSER 15.70 22.56 57.90 50.68
Otsu 21.51 26.28 54.65 54.16
\i = |
Without re-detection CILANEIS tOLATON GzRAG factry
With re-detection CLEANERS PULP KOLESTON GARAGE factory

Fig. 11: Differences of word recognition results with and without re-extraction. These examples are from ICDAR 2003/2013,
SVT, and IIIT 5K-word datasets. The recognition results are obtained under an open vocabulary condition.
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Fig. 12: Character wise recognition error rate on IIIT 5K-Word dataset. The error rates with and without re-scoring are shown
by points and the relative error reduction by re-scoring is shown by bars. The graph is arranged in the order of relative error
reduction.

6.4.3 Comparison with Other Methods

We compared our method with several competing word
recognition methods. We first discuss the evaluation on
the ICDAR 2013/2015 dataset. We followed the same
evaluation protocol as other competitors for fair com-
parison. The results on the ICDAR 2013 dataset are
shown in Table 6. The proposed method with re-scoring

was ranked second among all methods tested according
to the official metrics of the normalized edit distances
to the correct answers, bested only by PhotoOCR [6].
Although Jaderberg et al. [14] also report the accuracy
(90.8%), their evaluation protocol is different: ground
truth lexicon is given and words with two or fewer char-
acters or with non-alphanumeric characters were ex-

cluded.
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Table 5: Word recognition error rates on ICDAR 2003 to show the effect of text line-based re-scoring.

[ Method [ ICDAR03(50) | ICDARO3(FULL) | ICDARO3(Open) | ICDARI3 |
With re-scoring 12.21 15.58 38.57 41.00
Without re-scoring 13.02 16.40 52.91 47.58
Without re-scoring wivenhOLe GIFrs vour shoP drts ENr
With re-scoring Wivenhoe GIFTS your Shop arts ENT

Fig. 13: Differences of word recognition results with and without re-scoring. These examples are from ICDAR 2003/2013, SVT,
and IIIT 5K-word datasets. The recognition results are obtained under open vocabulary condition.

Table 8: Word recognition error rates of proposed method and other methods on ICDAR 2003, SVT, and IIIT 5K-Word.

[ Method [ ICDARO3(FULL) | ICDAR03(50) | SVT [ IIIT5K (Large) | IIIT5K (Medium) | TITT5K (Small) |
Proposed 15.58 12.21 23.49 51.53 19.77 12.60
Wang et al. [41] 16 10 30 y - -
Novikova et al. [31] 17.2 - 27.1 - - -
Almazan et al. [2] - - 12.99 - 24.40 11.43
Gordo et al. [12] - - - - 13.4 6.7
Alsharif and Pineau [3] 11.4 6.9 25.7 - - -
Jaderberg et al. [14] 1.4 1.3 4.6 - 7.3 2.9
Bissacco et al. [6] - - 9.61 - - -
Yao et al. [46] 19.67 11.52 24.11 61.7 30.7 19.8
Lee et al. [22] 24 12 20 - - -
Shi et al. [34] 20.70 12.56 26.49 - - -
Mishra et al. [26] - 19.72 26.43 55.70 42.50 31.75
ABBYY [1] 45 44 65 - - 75.67

The results on the ICDAR 2015 dataset are shown in
Table 7. Our method is behind the other three submit-
ted methods, although there is no big difference in error
rates. MAPS [20] and NESP [21] both perform segmen-
tation first and the binarized image is processed us-
ing OCR software. DSM used a deep structured model
with convolutional neural networks for local charac-
ter scoring. It seems our method cannot extract re-
liable characters with simple MSER and Otsu bina-
rization, because ICDAR 2015 datasets contain many
ill-conditioned words with noise and blur. To improve
the accuracy of our method for ill-conditioned text,
we should use a more sophisticated character extrac-
tion method such as the binarization techniques used
in NESP and MAPS.

The performances on the ICDAR 2003, SVT, and
ITIT 5K-Word datasets are shown in Table 8. Our method
outperforms Mishra et al. [27], Shi et al. [34], Yao et
al. [46], Novikova et al. [31], and ABBYY [1] and is
competitive with Wang et al. [41] and Lee et al. [22].
However, our method is still behind Almazan et al. [2],

Gordo et al. [12], Alsharif and Pineau [3], Bissacco et
al. [6], and Jaderberg et al. [14]. These methods take a
whole word-based approach [2,12,14] and/or use deep
neural networks [6,3]. This is discussed in detail later
in this subsection.

Our method outperforms Mishra et al. and Shi et
al. [26,34], which uses the similar cost function, which
suggests that our candidate regions and accompany-
ing classification score are better than these methods.
There are two main reasons for this: (1) our two-stage
character extraction achieves high recall with a small
number of false alarms, and (2) the unary cost is com-
puted by using four estimated lines, which improves
character classification accuracy while reducing false
positives.

Examples of successful recognition results are shown
in Fig. 14(a). As we can see, the proposed method was
able to recognize scene text with low resolution, differ-
ent fonts, and distortions. Figure 14(b) shows the cases
of incorrect recognition. The proposed method with the
four-line model could not recognize words with a curved
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Fig. 14: Examples of word recognition results of proposed method with four-line model. (a) Successfully recognized words. (b)

Incorrectly recognized words.

text line, largely inclined characters, and unconstrained
style.

Limitations of whole word-based approach.
The performance of our method is behind Gordo et
al. [12], Almazan et al. [2], and Jaderberg et al. [14],
which recognize text from the whole word images. How-
ever these methods have some limitations. First, they
face difficulty for cases without a lexicon, i.e., an open-
vocabulary condition. Gordo et al. [12] and Almazan
et al. [2] deal with the word recognition problem as a
retrieval problem from a given limited lexicon. Jader-
berg et al. [14] train the model with a pre-defined lexi-
con (about 90K words). The result is that words out of
lexicon cannot be recognized by these methods. Since
scene texts often contain words that are not listed in
the dictionary and are impossible to know in advance,
a method that can handle the open-vocabulary task is
useful.

a character classifier and achieve a significantly higher
character classification performance, as shown in Ta-
ble 2. Since our method is compatible with any charac-
ter classifier, we believe it can achieve an even better
performance if we replace our character classifier with
a more powerful one. Moreover, since our re-extraction
and re-scoring is separated from the final inference pro-
cess, our method can be incorporated with other meth-
ods (if not the whole word-based method) to refine the
candidate regions.

In addition, these methods require a huge amount
of training images. Bissacco et al. use 2.2 million hand-
labeled character images and Jaderberg et al. [14] use 9
million synthetic word images. Wang et al. [41] and Al-
sharif and Pineau [3] use about 130k character images
while we use 27,715 characters. Although training im-
ages can be prepared by synthetic generation, as Wang
et al. [41] and Jaderberg et al. [14] do, training deep

Second, these methods cannot handle significant changesneural networks with large datasets imposes a much

in layout because they jointly and implicitly handle lay-
out consistency (character alignment) in a holistic way.
Since we explicitly handle layout consistency, we argue
that our method is advantageous for use with signifi-
cant changes in layout (e.g., from linear to curved) by
explicit adaptation, whereas the holistic approaches re-
quire re-learning.

Deep neural networks. Bissacco et al. [6], Al-
sharif and Pineau [3], Wang et al. [41], and Jaderberg
et al. [14] exploit deep neural networks and outperform
our method. This is mainly due to the high performance
of the CNN-based character classifier. For example, Al-
sharif and Pineau use convolutional maxout networks as

lengthier training time and high computational power.

6.5 Curved Text

In this section, we provide an evaluation of the curved
text recognition discussed in Section 4.4. We first judge
if a given word is straight or curved. The selected style
is then estimated and re-extraction and re-scoring are
performed using the estimated style.

Figure 15 shows a comparison of the curved word
recognition results by the four line-based method, which
could not recognize curved words, and the four circle-
based method, which could. We then measured the over-
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Table 9: Comparison of word recognition performance be-
tween method with adaptive model selection and only four-
line model. (a) Tested on full datasets. (b) Tested on the sub-
set that contains curved cases only. (c) Tested on the subset
that contains linear cases only.

(a) All cases

[ Dataset [ Four-line model [ Adaptive model ]

IIIT5K (Small) 12.23 11.13
IIT5K (Medium) 19.10 17.77
IIIT5K (Large) 52.00 51.67
SVT 23.49 23.80
ICDARO3(50) 12.21 12.44
ICDARO3(FULL) 15.58 15.93

(b) Curved cases only

[ Dataset [ Four-line model [ Adaptive model ]
IIIT5K (Small) 49.10 29.70
IIIT5K (Medium) 61.21 38.79
IIIT5K (Large) 89.09 83.03

(c¢) Linear cases only

[ Dataset [ Four-line model [ Adaptive model l

ITIIT5K (Small) 49.84 49.84
IIIT5K (Medium) 16.54 16.61
IIIT5K (Large) 10.05 10.09

all performance on the IIIT 5K-Word, SVT, and IC-
DAR 2003 datasets. We counted the number of curved
words manually for each datasets: IIIT 5K-Word and
SVT contain 165 words (5.5%) and 10 words (1.55%),

respectively, while ICDAR 2003 contains none. The method

with adaptive model selection is compared with the
method using only a four-line model. The performances
on several datasets are shown in Table 9. In ITIT5K,
we evaluate the performance tested on the subsets that
contain curved cases or linear cases only, shown in Ta-
ble 9(b), (c). The error rates were decreased in the IIIT
5K-Word full dataset and a significant error decrease
can be seen in Table 9 (b), which shows the errors
evaluated on curved cases only. Accuracies were largely
unchanged in ICDAR 2003, which includes no curved
cases, indicating that style selection is successful and
performance does not decrease even if other styles are
considered (Table 9(c) also supports this). Since curved
cases in SVT were very difficult to recognize because
of complicated background or sharp curves, we cannot
recognize only one word among them, even with our
adaptive model.

6.6 Computational Time
We analyzed the computational time of different com-

ponents of the proposed method. The processing time
for each procedure is summarized in Table 10. The pro-

Table 10: Average computational time (per word) of different
components of the proposed method.

[ Procedure | Processing time |
Connected component-based extraction | 0.031 sec
First recognition 1.30 sec
Line estimation 0.0016 sec
Sliding window re-extraction 1.59 sec
Line-based re-scoring 0.005 sec
CRF 0.080 sec

cessing time is dominated by the character classifier,
which accounts for 96% of the overall time including
first recognition and re-extraction. Although our addi-
tional stages of the pipeline appear to involve costly
operations, every stage except for first recognition and
re-extraction is computationally efficient. Moreover, our
method reduces the number of classifier evaluations, as
discussed in Section 6.3 (Fig. 10). If our character classi-
fier is replaced with a more efficient one, the processing
time will be reduced significantly and our method could
be scalable to large datasets.

7 Conclusion

In this paper, we presented a method that can improve
performance by conducting character extraction and
word recognition in a bi-directional way. Our key nov-
elty resides in the estimation of four lines of text string
by character recognition results, not character extrac-
tion results. We utilize the estimated four lines to refine
the character extraction and recognition results on the
basis of the layout consistency of a text string. The
benefits of this are that 1) we can take into account ac-
curate geometric information to recognize character by
re-scoring process and 2) the hybrid of CC-based and
sliding window-based extraction achieves both compu-
tational efficiency and high recall of character extrac-
tion.

Although the final accuracy of our method was in-
ferior to that of state-of-the-art methods, each compo-
nent is easily convertible to another stronger compo-
nent because our method does not depend on any spe-
cific character classifier, character extraction method,
or cost function. Moreover, since our re-extraction and
re-scoring is separated from the final inference process,
our method can be incorporate with other methods in-
dependent of other components to refine the candidate
regions.
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S N

P A
Four lines SrRE ROSSQA GWELSC
Four circles STREET GRANARY PROSPECT CHELSEA

Fig. 15: Differences of word recognition result between four-line model and four-circle model. These examples are from IIIT
5K-word datasets. The recognition results are obtained under an open vocabulary condition.
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